首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6713篇
  免费   696篇
  国内免费   293篇
电工技术   58篇
技术理论   1篇
综合类   407篇
化学工业   3807篇
金属工艺   279篇
机械仪表   77篇
建筑科学   117篇
矿业工程   245篇
能源动力   118篇
轻工业   517篇
水利工程   61篇
石油天然气   389篇
武器工业   120篇
无线电   135篇
一般工业技术   676篇
冶金工业   557篇
原子能技术   94篇
自动化技术   44篇
  2024年   24篇
  2023年   76篇
  2022年   123篇
  2021年   218篇
  2020年   213篇
  2019年   200篇
  2018年   161篇
  2017年   237篇
  2016年   278篇
  2015年   257篇
  2014年   380篇
  2013年   427篇
  2012年   513篇
  2011年   535篇
  2010年   372篇
  2009年   385篇
  2008年   311篇
  2007年   401篇
  2006年   391篇
  2005年   316篇
  2004年   294篇
  2003年   255篇
  2002年   216篇
  2001年   184篇
  2000年   176篇
  1999年   147篇
  1998年   123篇
  1997年   79篇
  1996年   57篇
  1995年   52篇
  1994年   51篇
  1993年   52篇
  1992年   33篇
  1991年   25篇
  1990年   21篇
  1989年   18篇
  1988年   15篇
  1987年   25篇
  1986年   11篇
  1985年   12篇
  1984年   12篇
  1983年   7篇
  1982年   7篇
  1981年   6篇
  1980年   3篇
  1951年   3篇
排序方式: 共有7702条查询结果,搜索用时 15 毫秒
1.
ZnO rice like nonarchitects are grafted on the graphene carbon core via a rapid microwave synthesis route. The prepared grafted systems are characterized via XRD, SEM, RAMAN, and XPS to examined the structural and morphological parameters. Zinc oxide grafted graphene sheets (ZnO-G) are further doped in β-phase of polyvinylidene fluoride (PVDF) to prepare the polymer nanocomposites (PNCs) via mixed solvent approach (THF/DMF). β-phase confirmation of PVDF PNCs is done by FTIR studies. It is observed that ZnO-G filler enhances the β-phase content in the PNCs. Non-doped PVDF and PNCs are further studied for rheological behavior under the shear rate of 1–100 s−1. Doping of ZnO-G dopant to the PVDF matrix changes its discontinuous shear thickening (DST) behavior to continues shear thickening behavior (CST). Hydrocluster formation and their interaction with the dopant could be the reason for this striking DST to CST behavioral change. Strain amplitude sweep (10−3% -10%) oscillatory test reveals that the PNCs shows extended linear viscoelastic region with high elastic modulus and lower viscous modulus. Effective shear thickening behavior and strong elastic strength of these PNCs present their candidature for various fields including mechanical and soft body armor applications.  相似文献   
2.
Here, a fluoride-assisted route for the controlled in-situ synthesis of metal nanoparticles (NPs) (i.e., AgNPs, AuNPs) on polydimethylsiloxane (PDMS) is reported. The size and coverage of the NPs on the PDMS surface are modulated with time and over space during the synthetic process, leveraging the improved yield (10×) and faster kinetics (100×) of NP formation in the presence of F ions, compared to fluoride-free approaches. This enables the maskless preparation of both linear and step gradients and patterns of NPs in 1D and 2D on the PDMS surface. As an application in flexible plasmonics/photonics, continuous and step-wise spatial modulations of the plasmonic features of PDMS slabs with 1D and 2D AgNP gradients on the surface are demonstrated. An excellent spatially resolved tuning of key optical parameters, namely, optical density from zero to 5 and extinction ratio up to 100 dB, is achieved with AgNP gradients prepared in AgF solution for 12 minutes; the performance are comparable to those of commercial dielectric/interference filters. When used as a rejection filter in optical fluorescence microscopy, the AgNP-PDMS slabs are able to reject the excitation laser at 405 nm and retain the green fluorescence of microbeads (100 µm) used as test cases.  相似文献   
3.
To realize ultimately efficient signal processing, it is necessary to replace electrical signal processing circuits with optical ones. The optical micro-resonator, which localizes light at a certain spot, is an essential component in optical signal processing. Single-crystal calcium fluoride (CaF2) is the most suitable material for a highly efficient optical micro-resonator. The CaF2 resonator can only be manufactured by ultra-precision machining processes, because its crystal anisotropy does not allow the application of chemical etching. However, the optical micro-resonator's performance depends definitely on the surface integrity.This study investigated the relationship between surface quality after ultra-precision machining and crystal anisotropy. Firstly, crack initiation was investigated on the (1 0 0), (1 1 0), and (1 1 1) planes using the micro-Vickers hardness test. Secondly, brittle-ductile transition was investigated by orthogonal cutting tests. Finally, cutting performance of cylindrical turning was evaluated, which could be a suitable method for manufacturing the CaF2 resonator. The most difficult point in cylindrical turning of CaF2 is that the crystalline plane and cutting direction vary continuously. In order to manufacture the CaF2 optical micro-resonator more efficiently, analysis was conducted on crack initiation and surface quality of all crystallographic orientations from the perspective of slip system and cleavage.  相似文献   
4.
铝业废阴极炭块资源化利用技术研究   总被引:1,自引:0,他引:1  
为实现铝业废阴极炭块在钢铁冶金流程中资源化利用,通过深入研究废阴极炭块的相关物性,结合炼钢工艺对炭素及氟化物的物质需求,明确了废阴极炭块的无害化资源利用原理,工业试验结果表明废阴极炭块在炼钢转炉内可较好地实现无害化资源利用。  相似文献   
5.
采用CO2激光点火装置联合高速摄影系统及扫描电子显微镜等凝聚相燃烧产物分析技术,研究了高氯酸铵(AP)含量对高Al富燃料推进剂中重要组分AP/Al一次燃烧过程中燃烧现象、引燃时间、燃烧扩散时间、燃尽时间、燃烧效率、颗粒团聚及凝聚相燃烧产物的表面形貌、粒径及其分布的影响。结果表明,各AP/Al混合粉体的燃烧过程均可分为表面引燃、燃烧扩散和火焰熄灭3个阶段,但各样品在不同燃烧阶段的燃烧现象存在明显差异。AP含量由10wt%增至30wt%,样品燃烧剧烈程度增强,燃烧过程中固相颗粒的溅射现象越加明显;在火焰熄灭阶段,各样品燃烧由以停留在样品燃面处的燃烧为主逐渐变为以溅射颗粒的燃烧为主,且随反应进行,燃面已燃固相颗粒最先熄灭,各样品表面引燃时间、燃烧扩散时间、燃烧持续时间均缩短,即燃烧反应速率逐渐加快。在AP/Al混合物中,铝粉的燃烧效率、凝聚相燃烧产物粒度及其团聚程度随AP含量增加而增加。  相似文献   
6.
There are many potential causes of corrosion in animal buildings. Animals exhale large quantities of moisture into the air creating high relative humidity in the building if the moisture is not properly vented. High humidity increases the potential for condensation. In addition, ammonia may be found in large quantities in animal buildings. Ammonia is released from manure and urine. In addition, ammonium chloride is used as a nitrogen source in fertilisers. In this study, the atmospheric corrosion of hot-dip-galvanised steel and zinc alloy-coated steel such as zinc–aluminium and zinc–aluminium–magnesium has been studied in atmospheres containing different levels of ammonia. Investigations have also been conducted at different levels of ammonium chloride. The results are discussed in view of the mechanisms of corrosion of zinc and zinc alloy-coated steel in ammonia and ammonium chloride-containing environments.  相似文献   
7.
8.
《Ceramics International》2021,47(22):31268-31276
The relationship between the tensile strength of corroded domestic second-generation (2ed-gen) SiC fibers at various temperatures for 500 h in 46.5LiF-11.5NaF-42.0KF (mol. %) eutectic salt and the typical microstructure was studied. Weibull theory was used to analyze the critical defects that caused the tensile fracture, and the microstructure of fibers before and after corrosion was characterized. It is concluded that the decrease of tensile strength after corrosion at 800 °C is caused by the surface injury of fibers, which led to the shift of critical defects from the internal defects of virgin fibers to surface defects. Moreover, corrosion at higher temperature accelerates the corrosion process and dissolve the surface O-contained layer thoroughly. This shifts the critical defects back to the internal defects and will be helpful for the recovery of tensile strength of corroded fibers at the higher temperature.  相似文献   
9.
The morphology of the photoactive layer critically affects the performance of the bulk heterojunction polymer solar cells (PSCs). To control the morphology, we introduced a hydrophobic fluoropolymer polyvinylidene fluoride (PVDF) as nonvolatile additive into the P3HT:PCBM active layer. The effect of PVDF on the surface and the bulk morphology were investigated by atomic force microscope and transmission electron microscopy, respectively. Through the repulsive interactions between the hydrophilic PCBM and the hydrophobic PVDF, much more uniform phase separation with good P3HT crystallinity is formed within the active layer, resulting enhanced light harvesting and improved photovoltaic performance in conventional devices. The PCE of the conventional device can improve from 2.40% to 3.07% with PVDF additive. The PVDF distribution within the active layer was investigated by secondary ion mass spectroscopy, confirming a bottom distribution of PVDF. Therefore, inverted device structure was designed, and the PCE can improve from 2.81% to 3.45% with PVDF additive. Our findings suggest that PVDF is a promising nonvolatile processing additive for high performance polymer solar cells.  相似文献   
10.
The Nd-doped and Er-doped LuF3 single crystals were grown by the micro-pulling-down method to study their scintillation properties in the vacuum-ultraviolet (VUV) region. The doubly Nd–Er codoped single crystal was grown to study possibility of scintillation performance improvement by energy transfer from Er3+ to Nd3+ ions. The LiF flux was to avoid phase transition below melting temperature. The 1%Nd-doped sample showed the highest overall scintillation efficiency under X-ray excitation which was 7 times as high as that of the LaF3:Nd 8% standard. The leading Nd3+ 5d–4f emission was situated at 176 nm, while the Er3+ 5d–4f emission for Er-doped samples was observed at 163 nm, which better matches the sensitivity of some VUV-sensitive photodetectors. The optimum Er concentration was determined to be around 1–3 mol%. No Er3+ 5d–4f emission was observed for the doubly Er,Nd-codoped sample due to energy transfer from the Er3+ to Nd3+ ions. Slight improvement of the light yield was observed in the doubly-doped sample with respect to the Nd-only doped one.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号